Answer: three over two
Step-by-step explanation:
We know that the rate of change of a function [tex]y=f(x)[/tex] is given by :-
[tex]k=\dfrac{\text{change in y}}{\text{change in x}}[/tex]
From the consecutive values in the table, the change in x = [tex]3-1=2[/tex]
Change in y = [tex]5-2=3[/tex]
Now, the rate of change of the linear relationship modeled in the table will be ;-
[tex]k=\dfrac{3}{\text{2}}[/tex]