Consider the equation [tex] x^6+6x^3+5=0 [/tex].
First, you can use the substitution [tex] t=x^3 [/tex], then [tex] x^6=(x^3)^2=t^2 [/tex] and equation becomes [tex] t^2+6t+5=0 [/tex]. This equation is quadratic, so
[tex] D=6^2-4\cdot 5\cdot 1=36-20=16=4^2,\ \sqrt{D}=4,\\ \\ t_{1,2}=\dfrac{-6\pm 4}{2} =-5,-1 [/tex].
Then you can factor this equation:
[tex] (t+5)(t+1)=0 [/tex].
Use the made substitution again:
[tex] (x^3+5)(x^3+1)=0 [/tex].
You have in each brackets the expression like [tex] a^3+b^3 [/tex] that is equal to [tex] (a+b)(a^2-ab+b^2) [/tex]. Thus,
[tex] x^3+5=(x+\sqrt[3]{5})(x^2-\sqrt[3]{5}x+\sqrt[3]{25}) ,\\x^3+1=(x+1)(x^2-x+1) [/tex]
and the equation is
[tex] (x+\sqrt[3]{5})(x^2-\sqrt[3]{5}x+\sqrt[3]{25})(x+1)(x^2-x+1)=0 [/tex].
Here [tex] x_1=-\sqrt[3]{5} , x_2=-1 [/tex] and you can sheck whether quadratic trinomials have real roots:
1. [tex] D_1=(-\sqrt[3]{5}) ^2-4\cdot \sqrt[3]{25}=\sqrt[3]{25} -4\sqrt[3]{25} =-3\sqrt[3]{25} <0 [/tex].
2. [tex] D_2=(-1)^2-4\cdot 1=1-4=-3<0 [/tex].
This means that quadratic trinomials don't have real roots.
Answer: [tex] x_1=-\sqrt[3]{5} , x_2=-1 [/tex]
If you need complex roots, then
[tex] x_{3,4}=\dfrac{\sqrt[3]{5}\pm i\sqrt{3\sqrt[3]{25}}}{2} ,\\ \\x_{5,6}=\dfrac{1\pm i\sqrt{3}}{2} [/tex].