Respuesta :

           x                            x
-----------------  -  --------------------
x^2 -4x + 4            
x^2-3x+2

           x                            x
= ----------------  -  --------------------
    (x -2)^2            (x - 2)(x - 1)

        x (x-1)  - x(x +2)                       
= ----------------------------
          (x -2)^2 (x - 1)

      x^2 -x -x^2 - 2x                    
= --------------------------
      (x -2)^2 (x - 1)

           -3x                    
= -----------------------
      (x -2)^2 (x - 1)

answer 
missing term in the equation: -3x

Answer:

The missing term is x.

Step-by-step explanation:

Given expression is,

[tex]\frac{x}{x^2-4x+4}-\frac{x}{x^2-3x+2}------(1)[/tex]

Since, [tex]x^2-4x+4=(x)^2-2\times (2x)+(2)^2[/tex]

[tex]\implies x^2-4x+4=(x-2)^2------(2)[/tex]    ( (a-b)² = a² - 2ab + b² )

Now,   [tex]x^2-3x+2=x^2-2x-x+2[/tex]    ( By middle term splitting )

[tex]=x(x-2)-1(x-2)[/tex]

[tex]\implies x^2-3x+2=(x-1)(x-2)------(3)[/tex]

From equation (1), (2) and (3),

[tex]\frac{x}{x^2-4x+4}-\frac{x}{x^2-3x+2}=\frac{x}{(x-2)^2}-\frac{x}{(x-2)(x-1)}[/tex]

[tex]=\frac{x(x-1)-x(x-2)}{(x-2)^2(x-1)}[/tex]

[tex]=\frac{x(x-1-x+2)}{(x-2)^2(x-1)}[/tex]

[tex]=\frac{x(1)}{(x-2)^2(x-1)}[/tex]

[tex]=\frac{x}{(x-2)^2(x-1)}[/tex]

Hence, the missing term in the equation is x.

ACCESS MORE