[tex]Given:\\T=29.46y\approx 9.29\cdot 10^8s\\M_S\approx2.0\cdot 10^{30}kg\\G=6.67\cdot 10^{-11} \frac{m^3}{kg\cdot s^2} \\\\Find:\\R=?\\\\Solution:\\\\F_g= G\frac{mM_s}{R^2} \\\\F_c= \frac{mv^2}{R} \\\\F_g=F_c\\\\G\frac{mM_s}{R^2}=\frac{mv^2}{R} \Rightarrow G\frac{M_s}{R^2}=\frac{v^2}{R}\\\\v=\omega r\\\\G\frac{M_s}{R^2}= \frac{\omega^2R^2}{R}\Rightarrow G\frac{M_s}{R^2}=\omega^2R \\\\\omega= \frac{2 \pi }{T} \\\\G\frac{M_s}{R^3}= \frac{4 \pi ^2}{T^2} [/tex]
[tex]GM_ST^2=4 \pi ^2R^3\Rightarrow R= \sqrt[3]{ \frac{GM_ST^2}{4 \pi ^2} }\\\\\\R= \sqrt[3]{ \frac{6.67\cdot 10^{-11} \frac{m^3}{kg\cdot s^2}\cdot2.0\cdot 10^{30}kg( 9.29\cdot 10^8s)^2}{4\cdot 3.14^2} } \approx 1.42\cdot 10^{12}m[/tex]