Respuesta :

irspow
y=ar^t

-324/-12=(ar^4)/(ar^1)

27=r^3

3=r

-12=a(3^1)

-12=3a

-4=a

y=-4(3^n)

y(2)=-36

y(3)=-108




Answer:

The nth term for the geometric sequence is given by:

[tex]a_n = a_1 \cdot r^{n-1}[/tex]

where,

[tex]a_1[/tex] is the first term

r is the common ratio of the terms.

As per the statement:

Given the sequence

-12,__,__, -324

here, [tex]a_1 = -12[/tex] and [tex]a_4 = -324[/tex]

Solve for r:

By definition we have;

[tex]a_4 = a_1 \cdot r^3[/tex]

⇒[tex]-324 = -12 \cdot r^3[/tex]

Divide both sides by -12 we have;

[tex]27 = r^3[/tex]

⇒[tex]r = \sqrt[3]{27} =\sqrt[3]{3^3} = 3[/tex]

We have to find the missing terms [tex]a_2, a_3[/tex]

[tex]a_2=a_1 \cdot r[/tex]

⇒[tex]a_2 = -12 \cdot 3 = -36[/tex]

[tex]a_3=a_1 \cdot r^2[/tex]

⇒[tex]a_2 = -12 \cdot 3^2 = -12 \cdot 9 = -108[/tex]

therefore, the missing terms in the following geometric sequence is,

-12,_-36_,_-108_, -324

ACCESS MORE
EDU ACCESS