Respuesta :
y=ar^t
-324/-12=(ar^4)/(ar^1)
27=r^3
3=r
-12=a(3^1)
-12=3a
-4=a
y=-4(3^n)
y(2)=-36
y(3)=-108
-324/-12=(ar^4)/(ar^1)
27=r^3
3=r
-12=a(3^1)
-12=3a
-4=a
y=-4(3^n)
y(2)=-36
y(3)=-108
Answer:
The nth term for the geometric sequence is given by:
[tex]a_n = a_1 \cdot r^{n-1}[/tex]
where,
[tex]a_1[/tex] is the first term
r is the common ratio of the terms.
As per the statement:
Given the sequence
-12,__,__, -324
here, [tex]a_1 = -12[/tex] and [tex]a_4 = -324[/tex]
Solve for r:
By definition we have;
[tex]a_4 = a_1 \cdot r^3[/tex]
⇒[tex]-324 = -12 \cdot r^3[/tex]
Divide both sides by -12 we have;
[tex]27 = r^3[/tex]
⇒[tex]r = \sqrt[3]{27} =\sqrt[3]{3^3} = 3[/tex]
We have to find the missing terms [tex]a_2, a_3[/tex]
[tex]a_2=a_1 \cdot r[/tex]
⇒[tex]a_2 = -12 \cdot 3 = -36[/tex]
[tex]a_3=a_1 \cdot r^2[/tex]
⇒[tex]a_2 = -12 \cdot 3^2 = -12 \cdot 9 = -108[/tex]
therefore, the missing terms in the following geometric sequence is,
-12,_-36_,_-108_, -324