What is the simplified form of the seventh root of x to the fifth power times the seventh root of x to the fifth power? the square root of x x to the four ninth power x x times the seventh root of x cubed?

Respuesta :

We know that x^m * x^n = x^( m + n ).
And the seventh root of x to the fifth power is: [tex] \sqrt[7]{ x^{5} } [/tex]
Therefore:
[tex] \sqrt[7]{ x^{5} } * \sqrt[7]{ x^{5} } = \\ = \sqrt[7]{ x^{5} * x^{5} }= \\ = \sqrt[7]{ x^{10} }= \sqrt[7]{ x^{7} }* \sqrt[7]{ x^{3} }=x* \sqrt[7]{ x^{3} } [/tex]
Answer: D ) x times the seventh root of x cubed.

Answer:

x times the seventh root of x cubed.

Step-by-step explanation:

We know that x^m * x^n = x^( m + n ).

And the seventh root of x to the fifth power is:  \sqrt[7]{ x^{5} }  

Therefore:

\sqrt[7]{ x^{5} } *  \sqrt[7]{ x^{5} } = \\ = \sqrt[7]{ x^{5} * x^{5} }= \\ = \sqrt[7]{ x^{10} }= \sqrt[7]{ x^{7} }* \sqrt[7]{ x^{3} }=x* \sqrt[7]{ x^{3} }      

ACCESS MORE