Respuesta :

Answer:

[tex]-81t^{2}+16[/tex]

Step-by-step explanation:

we have

[tex](9t - 4)(-9t - 4)[/tex]

Applying distributive property

[tex](9t - 4)(-9t - 4)=(9t*-9t)+(9t*(-4))+(-4*(-9t))+(-4*(-4))\\=-81t^{2} -36t+36t+16\\=-81t^{2}+16[/tex]

Answer:

Option 2nd is correct

[tex]-81t^2+16[/tex]

Step-by-step explanation:

To find the product of:

[tex](9t-4)(-9t-4)[/tex]

We can write this as:

[tex]-(9t-4)(9t+4)[/tex]

Using identity rule:

[tex](a+b)(a-b) = a^2-b^2[/tex]

then;

[tex]-((9t)^2-(4)^2)[/tex]

⇒[tex]-(81t^2-16)[/tex]

Using distributive property i.e, [tex]a \cdot (b+c) = a\cdot b+ a\cdot c[/tex]

[tex]-81t^2+16[/tex]

Therefore, the following given product is, [tex]-81t^2+16[/tex]

ACCESS MORE