A given line has the equation 10x + 2y = −2.

What is the equation, in slope-intercept form, of the line that is parallel to the given line and passes through the point (0, 12)?

Respuesta :

y = -5x + 12 since the slope of that line is -5x and in order to pass through that point the y intercept must be 12

Step 1

Find the slope of the given line

we have

[tex]10x+2y=-2[/tex]

Isolate the variable y

Subtract [tex]10x[/tex] both sides

[tex]2y=-10x-2[/tex]

Divide by [tex]2[/tex] both sides

[tex]y=-5x-1[/tex]

The slope of the given line is

[tex]m=-5[/tex]

Step 2

Find the equation of the line that is parallel to the given line and passes through the point [tex](0, 12)[/tex]

we know that

If two lines are parallel. then their slope are equal

In this problem we have

[tex]m=-5[/tex]

[tex](0, 12)[/tex]

The equation of the line into slope-intercept form is equal to

[tex]y=mx+b[/tex]

substitute the values

[tex]12=-5*0+b[/tex]

[tex]b=12[/tex]

the equation of the line is

[tex]y=-5x+12[/tex]

therefore

the answer is

[tex]y=-5x+12[/tex]

ACCESS MORE