Respuesta :

2 2/3 pages=8/3 pages
1 hour=60 minutes
Let x represent the total pages in an hour
8/3 pages in 5 minutes
x pages in 60 minutes
Use cross multiply
x(5)=8/3(60)
5x=160
Divided 5 to each side
5x/5=160/5
x=32 pages per hour. As a result, there will be 32 pages per hour. Hope it help!
Answer:  "32 pages [per hour] " .
__________________________________________
Explanation:
_____________________________________________
Set up a ratio:
______________________________________________
2 ⅔ pages : 5 minute:: x pages: 1 hour ;  Solve for "x" ;

Rewrite as:
_______________________________________
(2 ⅔ pages) / 5 minutes = "x" pages/ 1 hour.

Cross-multiply ; and write as:

(5 minutes) ("x" pages) = (2 ⅔ pages) / 1 hour. ; 
________________________________________
Convert the "5 min"  to its values in units of "hour" ;
________________________________________
   5 min = ? hour ?
________________________________________
   5 min * ([tex] \frac{1 hour}{60 min} [/tex]  = ([tex] \frac{5}{60} [/tex] hr ;

([tex] \frac{5}{60} [/tex] hr  = [(5÷5)/(60÷5)] hr = (1/12) hr.
___________________________________________________
So we take our ratio, which is in the form of an equation, as follows:
___________________________________________________
                 (5 minutes) ("x" pages) = (2 ⅔ pages) * 1 hour.
___________________________________________________
       and rewrite — substituting "(1/12 hr)" in lieu of "(5 min)" — as follows:
___________________________________________________
      (1/12) * ("x" pages) = (2 ⅔ pages) * (1) ;  Solve for "x" ;
___________________________________________________
          Divide EACH SIDE of the equation by:  "(1/12 hr)"; or, more efficiently, multiply EACH SIDE of the equation by "12 hr" ; since "dividing by "(1/12)" is the same as multiplying by "12" ;

(i.e. on the "left hand side" of the equation:

[ (1/12) x ] / (1/12) = x ;

  AND:  (1/12)x * 12  = (1x/12) * (12/1) = (12x/12) = x ; the same result.
            {or: (1/12)x * 12 = (x/12) * (12/1) = ?  ;  The "12's" cancel out to "1's" ;  
                        since: "12÷12 = 1" ;  and we have:
                                    " (x/1) * (1/1) = x * 1 = x ;  which is the same value.
_____________________________________________________
   to isolate "x" on one side of the equation:
_____________________________________________________
          So, as explained above, we multiply EACH SIDE of the equation by "12" ; as follows:
_____________________________________________________    
  [ (1/12 hr) * ("x") ]  * 12  =  (2 ⅔ pages) * (1) * (12)  ;
______________________________________________
Simplify:
______________________________________________
                  x = (2 ⅔ pages) * (12) ; 

                  x = (8/3) * (12/1) = ?

The "3" cancels to a "1" ; and the "12" cancels to a "4" ;
_____________________________________________
since: "12÷3 = 4" ;  and since:  "3÷3 = 1 ".
_____________________________________________
  So rewrite as:
_____________________________________________
              x = (8/1) * (4/1) = 8 * 4 = 32 pages.
_____________________________________________
Alternate:
_____________________________________________
     When we have:  x = (2 ⅔ pages) * (12) ; 

                 x = (8/3) * (12/1) = (8*12)/ (3*1) = 96/3 = 32 .
   
                 x = 32 pages.
_______________________________________________
Alternate:
_______________________________________________
     When we have:  x = (2 ⅔ pages) * (12) ; 

                 x = (8/3) * (12/1) = (8*12)/ (3*1) ;

                 x = (8*12)/ (3*1) ;
 __________________________________________________
We can cancel out the "12 in the numerator" and the "3" in the denominator, and replace with "4" and "1", respectively; and rewrite as:

                 x = (8*4) / (1*1) = (32/1) = 32.
  
                 x = 32  pages per hour.
__________________________________________________

ACCESS MORE