Respuesta :
Answer:
Area of the triangle will be 161.70 cm²
Step-by-step explanation:
In the figure attached, in ΔABC
m∠ABC = 23°
Adjacent side BC = 27.6 cm
and hypotenuse AC = 30 cm
Area of the triangle ABC = [tex]\frac{1}{2}\times (\text{Height})\times (\text{Base})[/tex]
= [tex]\frac{1}{2}(AB)(BC)[/tex]
By the sine rule,
sin23° = [tex]\frac{AB}{AC}[/tex]
AB = AC(sin23°)
= 30sin23°
= 30×(0.3907)
= 11.72 cm
Area of the triangle ABC = [tex]\frac{1}{2}\times 11.72\times 27.6[/tex]
= 11.72×13.8
= 161.736 cm²
≈ 161.7 cm²
Therefore, area of the triangle will be 161.70 cm².
