Respuesta :
check the picture below, is a negative angle, thus, is going "clockwise"
[tex]\bf tan(\theta)=\cfrac{opposite}{adjacent}\qquad tan\left( -\frac{3\pi }{4} \right)=\cfrac{y}{x}\implies tan\left( -\frac{3\pi }{4} \right)=\cfrac{y}{-1} \\\\\\ -1\cdot tan\left( -\frac{3\pi }{4} \right)=y\implies -1\cdot \cfrac{sin\left( -\frac{3\pi }{4} \right)}{cos\left( -\frac{3\pi }{4} \right)}=y \\\\\\ -1\cdot \cfrac{-1}{-1}=y\implies -1[/tex]
[tex]\bf tan(\theta)=\cfrac{opposite}{adjacent}\qquad tan\left( -\frac{3\pi }{4} \right)=\cfrac{y}{x}\implies tan\left( -\frac{3\pi }{4} \right)=\cfrac{y}{-1} \\\\\\ -1\cdot tan\left( -\frac{3\pi }{4} \right)=y\implies -1\cdot \cfrac{sin\left( -\frac{3\pi }{4} \right)}{cos\left( -\frac{3\pi }{4} \right)}=y \\\\\\ -1\cdot \cfrac{-1}{-1}=y\implies -1[/tex]

The point on the terminal side is (1,-1) and this can be determined by using the trigonometric functions.
Given :
The point on the terminal side of θ = negative three [tex]\pi[/tex] divided by four that has an x coordinate of negative 1.
The following steps can be used in order to determine the point on the terminal side:
Step 1 - Write the given expression.
[tex]\theta = -\dfrac{3\pi}{4}[/tex]
Step 2 - The value of the trigonometric function is given by:
[tex]\rm tan \dfrac{3\pi}{4} =-1[/tex]
Step 3 - The trigonometric function can also be written as:
[tex]\rm tan \theta=\dfrac{y}{x}=-1[/tex]
Step 4 - Substitute the value of 'x' in the above expression.
y = -1
So, the point on the terminal side is (1,-1).
For more information, refer to the link given below:
https://brainly.com/question/10283811