Respuesta :
ANSWER
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12}{x - 7} \:
, x\ne -3,x\ne7[/tex]
EXPLANATION
We want to simplify
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } [/tex],
This Rational function is defined, for
[tex]{x}^{2} - 4x - 21\ne0[/tex],
[tex](x+3)(x-7)\ne0[/tex]
[tex]x\ne -3,x\ne7[/tex]
In order to simplify the above rational function, we need to factor both the numerator and the denominator.
Let us factor the numerator first to get,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ {x}^{2} - 4x - 21} [/tex]
As for the denominator, we need to split the middle term of the quadratic trinomial to get,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ {x}^{2} - 7x + 3x- 21} [/tex]
We factor to obtain,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ x(x - 7) + 3(x- 7)} [/tex]
We factor further to obtain,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ (x + 3)(x - 7)} [/tex]
We cancel out common factors to get,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12}{x - 7} [/tex]
where
[tex]x\ne -3,x\ne7[/tex]
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12}{x - 7} \:
, x\ne -3,x\ne7[/tex]
EXPLANATION
We want to simplify
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } [/tex],
This Rational function is defined, for
[tex]{x}^{2} - 4x - 21\ne0[/tex],
[tex](x+3)(x-7)\ne0[/tex]
[tex]x\ne -3,x\ne7[/tex]
In order to simplify the above rational function, we need to factor both the numerator and the denominator.
Let us factor the numerator first to get,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ {x}^{2} - 4x - 21} [/tex]
As for the denominator, we need to split the middle term of the quadratic trinomial to get,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ {x}^{2} - 7x + 3x- 21} [/tex]
We factor to obtain,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ x(x - 7) + 3(x- 7)} [/tex]
We factor further to obtain,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ (x + 3)(x - 7)} [/tex]
We cancel out common factors to get,
[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12}{x - 7} [/tex]
where
[tex]x\ne -3,x\ne7[/tex]
The restrictions on the variable are 12 over quantity x minus 7, x ≠ 7, x ≠ −3.
Given :
[tex]\dfrac{12x+36}{x^2-4x-21}[/tex]
Solution :
We know that,
[tex]x^2-4x-21\neq 0[/tex]
[tex]x^2-7x+3x-21\neq 0[/tex]
[tex](x-7)(x+3)\neq 0[/tex]
[tex]\rm x\neq 7\;and\;x\neq -3[/tex]
Now simplify the given equation:
[tex]\dfrac{12x+36}{x^2-4x-21} = \dfrac{12(x+3)}{(x-7)(x+3)}[/tex]
[tex]\dfrac{12x+36}{x^2-4x-21} = \dfrac{12}{(x-7)}[/tex]
Therefore the correct option is B).
For more information, refer the link given below
https://brainly.com/question/2263981