Simplify completely quantity 12 x plus 36 over quantity x squared minus 4 x minus 21 and find the restrictions on the variable.

12 over quantity x minus 7, x ≠ 7
12 over quantity x minus 7, x ≠ 7, x ≠ −3
quantity x plus 3 over quantity x minus 7, x ≠ 7
quantity x plus 3 over quantity x minus 7, x ≠ 7, x ≠ −3

Respuesta :

ANSWER

[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12}{x - 7} \:
, x\ne -3,x\ne7[/tex]

EXPLANATION

We want to simplify

[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } [/tex],

This Rational function is defined, for

[tex]{x}^{2} - 4x - 21\ne0[/tex],

[tex](x+3)(x-7)\ne0[/tex]

[tex]x\ne -3,x\ne7[/tex]

In order to simplify the above rational function, we need to factor both the numerator and the denominator.

Let us factor the numerator first to get,

[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ {x}^{2} - 4x - 21} [/tex]

As for the denominator, we need to split the middle term of the quadratic trinomial to get,

[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ {x}^{2} - 7x + 3x- 21} [/tex]


We factor to obtain,

[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ x(x - 7) + 3(x- 7)} [/tex]

We factor further to obtain,

[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ (x + 3)(x - 7)} [/tex]

We cancel out common factors to get,

[tex] \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12}{x - 7} [/tex]

where

[tex]x\ne -3,x\ne7[/tex]

The restrictions on the variable are 12 over quantity x minus 7, x ≠ 7, x ≠ −3.

Given :

[tex]\dfrac{12x+36}{x^2-4x-21}[/tex]

Solution :

We know that,

[tex]x^2-4x-21\neq 0[/tex]

[tex]x^2-7x+3x-21\neq 0[/tex]

[tex](x-7)(x+3)\neq 0[/tex]

[tex]\rm x\neq 7\;and\;x\neq -3[/tex]

Now simplify the given equation:

[tex]\dfrac{12x+36}{x^2-4x-21} = \dfrac{12(x+3)}{(x-7)(x+3)}[/tex]

[tex]\dfrac{12x+36}{x^2-4x-21} = \dfrac{12}{(x-7)}[/tex]

Therefore the correct option is B).

For more information, refer the link given below

https://brainly.com/question/2263981

ACCESS MORE