Denote each of the triangles ABC, where B is the right angle.
a.
[tex] t^{2}+ 12^{2}= 13^{2} [/tex]
instead of taking the square of 12 and 13, , take 12 squared to the right side and apply the difference of squares formula: [tex] a^{2}- b^{2}=(a-b)(a+b)[/tex]
[tex]t^{2}= 13^{2}- 12^{2}=(13-12)(13+12)=1*25[/tex]
so t is square root of 25, which is 5
b.
[tex] a^{2}+9 ^{2} = 12^{2} [/tex]
[tex]a^{2}= 12^{2} -9 ^{2}=(12-9)(12+9)=3*21=3*3*7 [/tex]
[tex]a= \sqrt{3*3*7}=3 \sqrt{7} [/tex]
b.
[tex] 6^{2} + 9^{2} = x^{2} [/tex]
[tex]36+81= x^{2} [/tex]
here we can factorize 9, to work with small numbers:
[tex]9(4+9)= x^{2}[/tex]
[tex]9*13= x^{2} [/tex]
[tex] x^{2} =3*3*13[/tex]
[tex]x= \sqrt{3*3*13}=3 \sqrt{13} [/tex]