In DEF, FE=13 and m(angle)F=34. Find DF to the nearest tenth

Answer:
DF is 15.7 unit
Step-by-step explanation:
Given,
In triangle DEF,
m∠E = 90°, m∠F = 34° and EF = 13,
We have to find the measure of side DF.
By the property of a triangle,
m∠E + m∠F + m∠D = 180°
⇒ 90° + 34° + m∠D = 180°
⇒ m∠D = 180° - 124° = 56°
By the law of sines,
[tex]\frac{sin D}{EF}=\frac{sin E}{DF}[/tex]
[tex]sin D\times DF = sin E\times EF[/tex] ( By cross multiplication )
[tex]\implies DF = \frac{ sin E\times EF}{sin D}[/tex]
By substituting values,
[tex]DF = \frac{sin 90^{\circ}\times 13}{sin 56^{\circ}}=15.6808333306\approx 15.7\text{ unit}[/tex]