Parameterize the intersection by setting [tex]x(t)=t[/tex], so that
[tex]x^2=2y\iff y=\dfrac{x^2}2\implies y(t)=\dfrac{t^2}2[/tex]
[tex]3z=xy\iff z=\dfrac{xy}3\implies z(t)=\dfrac{t^3}6[/tex]
The length of the path [tex]C[/tex] is then given by the line integral along [tex]C[/tex],
[tex]\displaystyle\int_C\mathrm dS[/tex]
where [tex]\mathrm dS=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dz}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]. We have
[tex]\dfrac{\mathrm dx}{\mathrm dt}=1[/tex]
[tex]\dfrac{\mathrm dy}{\mathrm dt}=t[/tex]
[tex]\dfrac{\mathrm dz}{\mathrm dt}=\dfrac{t^2}2[/tex]
and so the line integral is
[tex]\displaystyle\int_{t=0}^{t=2}\sqrt{1^2+t^2+\dfrac{t^4}4}\,\mathrm dt[/tex]
This result is fortuitous, since we can write
[tex]1+t^2+\dfrac{t^4}4=\dfrac14(t^4+4t^2+4)=\dfrac{(t^2+2)^2}4=\left(\dfrac{t^2+2}2\right)^2[/tex]
and so the integral reduces to
[tex]\displaystyle\int_{t=0}^{t=2}\frac{t^2+2}2\,\mathrm dt=\dfrac{10}3[/tex]