Respuesta :

A is correct. ...................................................

Answer:

[tex]y =\frac{7}{8}x + 12[/tex] and[tex]y = -\frac{8}{7}x - 8[/tex]

Step-by-step explanation:

The product of the slopes of the perpendicular lines is -1

Option 1) [tex]y =\frac{7}{8}x + 12[/tex] and[tex]y = -\frac{8}{7}x - 8[/tex]

General equation of line : [tex]y=mx+c[/tex]

Comparing with general equation

Slope of line 1 = [tex]\frac{7}{8}[/tex]

Slope of line 2= [tex] -\frac{8}{7}[/tex]

Now product of slopes = [tex]\frac{7}{8} \times \frac{-8}{7}[/tex]

                                      = [tex]-1[/tex]

Since The product of the slopes of the perpendicular lines is -1

So, [tex]y =\frac{7}{8}x + 12[/tex] and[tex]y = -\frac{8}{7}x - 8[/tex] represent perpendicular lines

Option 2) [tex]y = 5x + 15[/tex] and  [tex]y = -5x + 15[/tex]

General equation of line : [tex]y=mx+c[/tex]

Comparing with general equation

Slope of line 1 = 5

Slope of line 2= -5

Now product of slopes = [tex]5 \times -5[/tex]

                                      = [tex]-25[/tex]

Since The product of the slopes of the perpendicular lines is not -1

So, [tex]y = 5x + 15[/tex] and  [tex]y = -5x + 15[/tex] does not represents the  perpendicular lines.

Option 3) [tex]y = 4x + 9[/tex] and [tex]y = 4x -9[/tex]

General equation of line : [tex]y=mx+c[/tex]

Comparing with general equation

Slope of line 1 = 4

Slope of line 2= 4

Now product of slopes = [tex]4 \times 4[/tex]

                                      = [tex]16[/tex]

Since The product of the slopes of the perpendicular lines is not -1

So, [tex]y = 4x + 9[/tex] and [tex]y = 4x -9[/tex]does not represents the  perpendicular lines.

Option 4)[tex]y = 9[/tex] and [tex]y = 18[/tex]

General equation of line : [tex]y=mx+c[/tex]

Comparing with general equation

Slope of line 1 = 0

Slope of line 2=0

Now product of slopes = [tex]0 \times 0[/tex]

                                      = [tex]0[/tex]

Since The product of the slopes of the perpendicular lines is not -1

So,[tex]y = 9[/tex] and [tex]y = 18[/tex] does not represents the  perpendicular lines.