[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\\\
% left side templates
\begin{array}{llll}
f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
y=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}}
\end{array}\\\\
--------------------\\\\[/tex]
[tex]\bf % template detailing
\bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\
\bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}
\\\\
\bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\
\left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\
\left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\[/tex]
[tex]\bf \bullet \textit{ vertical shift by }{{ D}}\\
\left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\
\left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{{{ B}}}[/tex]
so.. let's see
[tex]\bf f(x)=|3(x-2)|+5\implies
\begin{array}{lllccll}
f(x)=&1|&3x&-6|&+5\\
&\uparrow &\uparrow &\uparrow &\uparrow \\
&A&B&C&D
\end{array}[/tex]
horizontal shift of C/B
shrinks by A*B
vertical shift by D