Respuesta :
we know that
the expression represent the function
[tex]f(x)=\frac{4x^2-4x-8}{2x+2}[/tex]
Factor [tex]4[/tex] in the numerator
Factor [tex]2[/tex] in the denominator
so
[tex]f(x)=\frac{4(x^2-x-2)}{2(x+1)}[/tex]
the domain of the function is all real numbers except for [tex]x=-1[/tex] because the denominator can not be zero
Simplify the function
[tex]f(x)=\frac{4(x^2-x-2)}{2(x+1)}=\frac{4(x+1)(x-2)}{2(x+1)}[/tex]
[tex]f(x)=2(x-2)=2x-4[/tex]
Remember that for [tex]x=-1[/tex] the function does not exist
so
find the value of f(x) for [tex]x=-1[/tex] in the simplified function
[tex]f(x)=2x-4[/tex]
[tex]f(-1)=2*(-1)-4=-6[/tex]
The function has a discontinuity at point [tex](-1,-6)[/tex]
therefore
the answer is the option
graph of 2 x minus 4, with discontinuity at negative 1, negative 6
Answer:
Step-by-step explanation:
we know that
the expression represent the function
Factor in the numerator
Factor in the denominator
so
the domain of the function is all real numbers except for because the denominator can not be zero
Simplify the function
Remember that for the function does not exist
so
find the value of f(x) for in the simplified function
The function has a discontinuity at point
therefore
the answer is the option
graph of 2 x minus 4, with discontinuity at negative 1, negative 6