Respuesta :

Value of a

Segment PT and TR must have equal length. Therefore,

a + 4 = 2a

a = 4

Length of PR

PR = (a + 4) + 2a = (4 + 4) + 2(4)

PR = 16

Value of b

Segment QT and TS must have equal length. Therefore,

b = 2b – 3

b = 3

Length of QS

QS = b + (2b – 3) = 3 + (2*3 – 3)

QS = 6

Answer:  a=4,b=3,PR=16 and QS=6

Step-by-step explanation: Since diagonals of parallelogram intersect each other into equal parts

i.e.                   a+4=2a and b=2b-3

i.e.     a=4 and b=3

so, length of PR=a+4+2a

                           =3a+4

                           =3×4+4

                            =16

and length of QS=b+2b-3

                             =3b-3

                              =3×3-3

                              =6