Respuesta :
(2^7)^2 __ (2^10) * (2^2)
2^(7 * 2) __ 2^(10 + 2)
2^14 __ 2^12
2^14 > 2^12
2^(7 * 2) __ 2^(10 + 2)
2^14 __ 2^12
2^14 > 2^12
Answer:
(2^7)^2 > 2^10 * 2^2
Step-by-step explanation:
Use <, >, or = to complete the statement.
(2^7)^2------ 2^10 * 2^2
To compare we simplify the left side and right side as well
Apply exponential property
(a^m)^n = a^mn
[tex](2^7)^2 = 2^{14}[/tex]
a^m * a^n = a^m+n
[tex]2^{10} * 2^2= 2^{12}[/tex]
2^14 ------- 2^12
Now we compare the exponents
14 is greater than 12
so (2^7)^2 > 2^10 * 2^2