Respuesta :
Answer:
B. 6 units.
Step-by-step explanation:
We have been given an image of a parallelogram and the length of one altitude of our given parallelogram is [tex]\sqrt{22.5}[/tex] and we are asked to find the length of other altitude of our given parallelogram.
We will use area of parallelogram formula to find the length of other altitude of our given parallelogram.
[tex]\text{Area of parallelogram}=\text{Base length*Height}[/tex], where height represents altitude.
Let us find both bases of parallelogram using distance formula.
[tex]\text{Distance}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\text{Length of vertical base}=\sqrt{(4-1)^2+(8-4)^2}[/tex]
[tex]\text{Length of vertical base}=\sqrt{(3)^2+(4)^2}[/tex]
[tex]\text{Length of vertical base}=\sqrt{9+16}[/tex]
[tex]\text{Length of vertical base}=\sqrt{25}=5[/tex]
[tex]\text{Length of horizontal base}=\sqrt{(7-1)^2+(2-4)^2}[/tex]
[tex]\text{Length of horizontal base}=\sqrt{(6)^2+(-2)^2}[/tex]
[tex]\text{Length of horizontal base}=\sqrt{36+4}[/tex]
[tex]\text{Length of horizontal base}=\sqrt{40}[/tex]
We can set an equation to find the other altitude of our parallelogram as:
[tex]\text{Altiude}_1*\text{Vertical base}=\text{Altiude}_2*\text{Horizontal base}[/tex]
Upon substituting our given values in above equation we will get,
[tex]\sqrt{22.5}*\sqrt{40}=\text{Altiude}_2*5[/tex]
[tex]30=\text{Altiude}_2*5[/tex]
Let us divide both sides of our equation by 5.
[tex]\frac{30}{5}=\frac{\text{Altiude}_2*5}{5}[/tex]
[tex]6=\text{Altiude}_2[/tex]
Therefore, the length of the other altitude of our given parallelogram will be 6 units and option B is the correct choice.
Given the parameters, the length of the other altitude is B. 6 units.
Calculations and Parameters:
Given that one length of the parallelogram is [tex]\sqrt{22/5}[/tex]
Given the formula:
[tex]Area= Base length * height[/tex]
To find both bases of the parallelogram, we would be using the distance formula
Distance= [tex]\sqrt{(x2-x1)^2 + (y2-y1)^2}[/tex]
When we calculate after putting the values, we would get:
Length of vertical base= 5
Length of horizontal base= [tex]\sqrt{40}[/tex]
We would use an equation to find the other altitude of our parallelogram
Altitude1 * Vertical base= Altitude2 * 5
Substituting the values:
Altitude2= 6 units.
Read more about parallelograms here:
https://brainly.com/question/3050890