Respuesta :
cot²x/csc+1
=(csc²x-1)/(csc+1)
=((1/sin²x)-1)/((1/sinx)+1)
=((1-sin²x)/sin²x)/((1+sinx)/sinx)
=(1-sin²x)/(1+sinx)
=(1+sinx)(1-sinx)/sinx(1+sinx)
=(1-sinx)/sinx
=(csc²x-1)/(csc+1)
=((1/sin²x)-1)/((1/sinx)+1)
=((1-sin²x)/sin²x)/((1+sinx)/sinx)
=(1-sin²x)/(1+sinx)
=(1+sinx)(1-sinx)/sinx(1+sinx)
=(1-sinx)/sinx
The given trigonometric identity is proved to be true.
What is a trigonometric identity?
"Trigonometric identities are the equalities that involve trigonometry functions and holds true for all the values of variables given in the equation. "
Given, cot² x / (cosec x + 1)
= (cosec² x - 1) / (cosec x + 1)
= (cosec x + 1) (cosec x - 1) / (cosec x + 1)
= (cosec x - 1)
= (1 / sin x) - 1
= (1 - sin x) / sin x
Learn more about trigonometric identity here: https://brainly.com/question/1553676