Respuesta :
Rational Root Theorem:
A.
Factors of P (Constant): 28 : 1, 2, 4, 7, 14, 28
-----------------------------------------------------------------------------------
Factors of Q (Leading Coefficient): 24 : 1, 2, 3, 4, 6, 8, 12, 24
+ - 1, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24, 2, 2/3, 4, 4/3, 7, 7/2, 7/3, 7/4, 7/6, 7/8, 7/12, 7/24, 14, 14/3, 28, 28/3,
A.
Factors of P (Constant): 28 : 1, 2, 4, 7, 14, 28
-----------------------------------------------------------------------------------
Factors of Q (Leading Coefficient): 24 : 1, 2, 3, 4, 6, 8, 12, 24
+ - 1, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24, 2, 2/3, 4, 4/3, 7, 7/2, 7/3, 7/4, 7/6, 7/8, 7/12, 7/24, 14, 14/3, 28, 28/3,
Rational root theorem is used to determine the possible root of a function.
-7/8 is a potential rational root of [tex]\mathbf{f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28}[/tex]
We have:
[tex]\mathbf{f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28}[/tex]
The constant term is:
[tex]\mathbf{p=28}[/tex]
The factors are:
[tex]\mathbf{p=\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28}[/tex]
The leading coefficient is:
[tex]\mathbf{q = 24}[/tex]
The factors are:
[tex]\mathbf{q=\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24}[/tex]
So, the possible roots are:
[tex]\mathbf{Roots = \pm \frac{p}{q}}[/tex]
One of the factors of p is 7; while one of the factors of q is 8.
So, we have:
[tex]\mathbf{Roots = \pm \frac{7}{8}}[/tex]
Hence, -7/8 is a potential rational root of [tex]\mathbf{f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28}[/tex]
Read more about rational roots at:
https://brainly.com/question/9353378