Respuesta :
The illegal values of c in the multiplication statement
[tex]\frac{c^2-3c-10}{c^2+5c-14}\cdot \frac{c^2-c-2}{c^2-2c-15}[/tex]
are the values of c for which
[tex]c^2+5c-14=0[/tex] and [tex]c^2-2c-15=0[/tex]
For
[tex]c^2+5c-14=0 \\ \\ (c-2)(c+7)=0 \\ \\ c-2=0 \ and \ c+7=0 \\ \\ c=2 \ and \ c=-7[/tex]
For
[tex]c^2-2c-15=0 \\ \\ (c-5)(c+3)=0 \\ \\ c-5=0 \ and \ c+3=0 \\ \\ c=5 \ and \ c=-3[/tex]
Therefore, the illegal values of c in the multiplication statement
[tex]\frac{c^2-3c-10}{c^2+5c-14}\cdot \frac{c^2-c-2}{c^2-2c-15}[/tex]
are -7, -3, 2 and 5.
[tex]\frac{c^2-3c-10}{c^2+5c-14}\cdot \frac{c^2-c-2}{c^2-2c-15}[/tex]
are the values of c for which
[tex]c^2+5c-14=0[/tex] and [tex]c^2-2c-15=0[/tex]
For
[tex]c^2+5c-14=0 \\ \\ (c-2)(c+7)=0 \\ \\ c-2=0 \ and \ c+7=0 \\ \\ c=2 \ and \ c=-7[/tex]
For
[tex]c^2-2c-15=0 \\ \\ (c-5)(c+3)=0 \\ \\ c-5=0 \ and \ c+3=0 \\ \\ c=5 \ and \ c=-3[/tex]
Therefore, the illegal values of c in the multiplication statement
[tex]\frac{c^2-3c-10}{c^2+5c-14}\cdot \frac{c^2-c-2}{c^2-2c-15}[/tex]
are -7, -3, 2 and 5.
Answer: D. PLZ MARK BRAINLIEST THIS TOOK ME ABOUT 5 MIN TO DO
2,-7,5,and -3
Step-by-step explanation:
so look at the denominators... the illegal value means that you cant practically have a zero in your answer (so we are trying to find what values = 0)
You have 2 denominators which are c2 +5c-14=0 and c2 -2c -15=0.
1) Factor out c2 +5c-14=0 ... (c-2)(c+7)=0
2) Factor out c2 -2c -15=0 ... (c-5)(c+3)=0
c-2=0 {2} c+7=0 {-7} (2 and -7 are the illegal values for c2 +5c-14=0 )
c-5=0 {5} c+3=0 {-3} (5 and -3 are the illegal values for c2 -2c -15=0 )
yep so your illegal values are 2,-7,5, and -3
Otras preguntas
