Identify the "inside function" u = f(x) and the "outside function" y = g(u). Then find dy/dx using the Chain Rule.
y = sec [tex] \sqrt{x} [/tex]

Respuesta :

dfLet [tex]f(x)=\sec x[/tex] and [tex]g(x)=\sqrt x[/tex]. Then

[tex]y=\sec\sqrt x=\sec(g(x))=f(g(x))=f\circ g(x)[/tex]

By the chain rule,

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm du}\dfrac{\mathrm du}{\mathrm dx}[/tex]

where [tex]u=g(x)=\sqrt x[/tex], so that [tex]y=f(g(x))=f(u)=\sec u[/tex]. We have

[tex]\dfrac{\mathrm du}{\mathrm dx}=\dfrac1{2\sqrt x}[/tex]
[tex]\dfrac{\mathrm d\sec u}{\mathrm du}=\sec u\tan u[/tex]

and so

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\sec u\tan u\dfrac{\mathrm dy}{\mathrm du}=\dfrac{\sec\sqrt x\,\tan\sqrt x}{2\sqrt x}[/tex]
ACCESS MORE