Respuesta :
Let
x--------> the number of children
y------> the number of teenagers
z------> the number of adults
we know that
[tex]2x+3y+5z=1,950[/tex] ------> equation A
[tex]x+y+z=570[/tex] -----> equation B
[tex]y=\frac{3}{4}x[/tex]
[tex]x=\frac{4}{3}y[/tex] -------> equation C
Substitute equation C in equation A and equation B
[tex]2[\frac{4}{3}y]+3y+5z=1,950[/tex]
[tex]\frac{17}{3}y+5z=1,950[/tex] --------> equation D
[tex][\frac{4}{3}y]+y+z=570[/tex]
[tex]\frac{7}{3}y+z=570[/tex] --------> equation E
Multiply equation E by [tex]-5[/tex]
[tex]-\frac{35}{3}y-5z=-2,850[/tex] --------> equation F
Adds equation D and equation F
[tex]\frac{17}{3}y+5z=1,950\\\\-\frac{35}{3}y-5z=-2,850\\\\---------\\\\-\frac{18}{3}y=-900\\\\y=3*900/18\\\\y=150\ teenagers[/tex]
therefore
the answer is the option
[tex]150\ teenagers[/tex]