Respuesta :

we have

[tex]g(x)=(x^{2}+3x-4)( x^{2}-4x+29)[/tex]

To find the roots of g(x)

Find the roots of the first term and then find the roots of the second term

Step 1

Find the roots of the first term

[tex](x^{2}+3x-4)=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex](x^{2}+3x)=4[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex](x^{2}+3x+1.5^{2})=4+1.5^{2}[/tex]

[tex](x^{2}+3x+1.5^{2})=6.25[/tex]

Rewrite as perfect squares

[tex](x+1.5)^{2}=6.25[/tex]

Square root both sides

[tex](x+1.5)=(+/-)2.5[/tex]

[tex]x=-1.5(+/-)2.5[/tex]

[tex]x=-1.5+2.5=1[/tex]

[tex]x=-1.5-2.5=-4[/tex]

so the factored form of the first term is

[tex](x^{2}+3x-4)=(x-1)(x+4)[/tex]

Step 2

Find the roots of the second term

[tex](x^{2}-4x+29)=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex](x^{2}-4x)=-29[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex](x^{2}-4x+4)=-29+4[/tex]

[tex](x^{2}-4x+4)=-25[/tex]

Rewrite as perfect squares

[tex](x-2)^{2}=-25[/tex]

Remember that

[tex]i=\sqrt{-1}[/tex]

Square root both sides

[tex](x-2)=(+/-)5i[/tex]

[tex]x=2(+/-)5i[/tex]

[tex]x=2+5i[/tex]

[tex]x=2-5i[/tex]

so the factored form of the second term is

[tex](x^{2}-4x+29)=(x-(2+5i))(x-(2-5i))[/tex]

Step 3

Substitute the factored form of the first and second term in g(x)

[tex]g(x)=(x-1)(x+4)(x-(2+5i))(x-(2-5i))[/tex]

therefore

the answer is

the roots are

[tex]x1=1\\x2=-4\\x3=(2+5i)\\x4=(2-5i)[/tex]

Answer:

B,C,E,F

Step-by-step explanation:

ACCESS MORE