Respuesta :
Answer:
The simplify form of the expression is [tex]\frac{mn}{3}[/tex].
Step-by-step explanation:
Consider the provided expression.
[tex]\frac{(m^5n^5)^\frac{1}{6} }{3(mn)^ \frac{-1}{6}}[/tex]
Apply the exponent rule: [tex](ab)^c=a^cb^c[/tex]
Therefore,
[tex]\frac{m^{\frac{5}{6}}n^{\frac{5}{6}}}{3m^{-\frac{1}{6}}n^{-\frac{1}{6}}}[/tex]
[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}[/tex]
[tex]\frac{n^{\frac{5}{6}-(-\frac{1}{6})}m^{\frac{5}{6}-\left(-\frac{1}{6}\right)}}{3}[/tex]
[tex]\frac{mn}{3}[/tex]
Therefore, the simplify form of the expression is [tex]\frac{mn}{3}[/tex].