Respuesta :

1/3 x m^(2/3) x n^(2/3)

Answer:

The simplify form of the expression is [tex]\frac{mn}{3}[/tex].

Step-by-step explanation:

Consider the provided expression.

[tex]\frac{(m^5n^5)^\frac{1}{6} }{3(mn)^ \frac{-1}{6}}[/tex]

Apply the exponent rule: [tex](ab)^c=a^cb^c[/tex]

Therefore,

[tex]\frac{m^{\frac{5}{6}}n^{\frac{5}{6}}}{3m^{-\frac{1}{6}}n^{-\frac{1}{6}}}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}[/tex]

[tex]\frac{n^{\frac{5}{6}-(-\frac{1}{6})}m^{\frac{5}{6}-\left(-\frac{1}{6}\right)}}{3}[/tex]

[tex]\frac{mn}{3}[/tex]

Therefore, the simplify form of the expression is [tex]\frac{mn}{3}[/tex].

ACCESS MORE