Respuesta :
P(A/B) = P(A∩B) / P(B)
P(A/B) = (3/10) / (2/5) = 3/10 x 5/2 = 15/20 = 3/4
P(A/B) = (3/10) / (2/5) = 3/10 x 5/2 = 15/20 = 3/4
Answer:
P(A/B)= [tex]{\frac{3}{4}}[/tex]
Step-by-step explanation:
According to the general equation for conditional probability, if P(A^B)= 3/10 and P(B)= 2/5
P(A∩B) = 3/10
P(B)= 2/5
We need to find P(A/B)
the formula is P(A/B) = P(A∩B)/ P(B)
Plug in the given values
P(A/B)= [tex]\frac{\frac{3}{10} }{\frac{2}{5} }[/tex]
P(A/B)= [tex]{\frac{3}{10} * {\frac{5}{2}[/tex]
P(A/B)= [tex]{\frac{3}{4}}[/tex]