Respuesta :

P(A/B) = P(A∩B) / P(B)

P(A/B) = (3/10) / (2/5) = 3/10 x 5/2 = 15/20 = 3/4

Answer:

P(A/B)= [tex]{\frac{3}{4}}[/tex]

Step-by-step explanation:

According to the general equation for conditional probability, if P(A^B)= 3/10 and P(B)= 2/5

P(A∩B) = 3/10

P(B)= 2/5

We need to find P(A/B)

the formula is P(A/B) = P(A∩B)/ P(B)

Plug in the given values

P(A/B)= [tex]\frac{\frac{3}{10} }{\frac{2}{5} }[/tex]

P(A/B)= [tex]{\frac{3}{10} * {\frac{5}{2}[/tex]

P(A/B)= [tex]{\frac{3}{4}}[/tex]