Explain why the two figures below are not similar. Use complete sentences and provide evidence to support your explanation.

Explain why the two figures below are not similar Use complete sentences and provide evidence to support your explanation class=

Respuesta :

check the picture below
Ver imagen jdoe0001

Answer:

The two figures below are not similar

Step-by-step explanation:

we know that

If the two figures are similar

then

the ratio of their corresponding sides are equal

[tex]\frac{CD}{IJ}=\frac{DE}{JK}[/tex]

the formula to calculate the distance between two points is equal to


[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]


Step 1

Find the distance CD

[tex]C(-4,2)\\D(-1,2)[/tex]  

substitute the values


[tex]d=\sqrt{(2-2)^{2}+(-1+4)^{2}}[/tex]


[tex]d=\sqrt{(0)^{2}+(3)^{2}}[/tex]


[tex]dCD=3\ units[/tex]


Step 2

Find the distance IJ

[tex]I(2,1)\\J(4,1)[/tex]  

substitute the values


[tex]d=\sqrt{(1-1)^{2}+(4-2)^{2}}[/tex]


[tex]d=\sqrt{(0)^{2}+(2)^{2}}[/tex]


[tex]dIJ=2\ units[/tex]


Step 3

Find the distance DE

[tex]D(-1,2)\\E(0,0)[/tex]  

substitute the values


[tex]d=\sqrt{(0-2)^{2}+(0+1)^{2}}[/tex]


[tex]d=\sqrt{(-2)^{2}+(1)^{2}}[/tex]


[tex]dED=\sqrt{5}\ units[/tex]

Step 4

Find the distance JK

[tex]J(4,1)\\K(5,0)[/tex]  

substitute the values


[tex]d=\sqrt{(0-1)^{2}+(5-4)^{2}}[/tex]


[tex]d=\sqrt{(-1)^{2}+(1)^{2}}[/tex]


[tex]dJK=\sqrt{2}\ units[/tex]

Step 5

Find the ratios of the corresponding sides

Remember that

If the figures are similar

then

the ratio of their corresponding sides are equal

[tex]\frac{CD}{IJ}=\frac{DE}{JK}[/tex]

we have

[tex]dCD=3\ units[/tex]


[tex]dIJ=2\ units[/tex]


[tex]dED=\sqrt{5}\ units[/tex]

[tex]dJK=\sqrt{2}\ units[/tex]

Substitute

[tex]\frac{3}{2}\neq \frac{\sqrt{5}}{\sqrt{2}}[/tex]

therefore

the figures are not similar