Find the perimeter of the following shape: Shape ABCD is shown. Point A is at 7, 5. Point B is at 6, 3. Point C is at 3, 2. Point D is at 4, 4. 10.8 11 11.4 11.6

Respuesta :

Answer:

A. 10.8.

Step-by-step explanation:

We are given that  a shape ABCD . The point A is (7,5), B (6,3), C(3,2) and D (4,4).

By using distance formula we find sides of given shape and then find perimeter.

Distance formula:The distance between two points [tex](x_1,y_1)[/tex]and [tex](x_2,y_2)[/tex]

=[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Length of side AB=[tex]\sqrt{(6-7)^2+(3-5)^2}=\sqrt{1+4}[/tex]

Length of side AB=[tex]\sqrt5[/tex]units

Length of BC=[tex]\sqrt{(3-6)^2+(2-3)^2}=\sqrt{9+1}[/tex]

Length of side BC=[tex]\sqrt{10}[/tex] units

Length of side CD=[tex]\sqrt{(4-3)^2+(4-2)^2}=\sqrt{1+4}[/tex]

Length of side CD=[tex]\sqrt5[/tex]

Length of side AD=[tex]\sqrt{(4-7)^2+(4-5)}=\sqrt{9+1}[/tex]

Length of side AD=[tex]\sqrt{10}[/tex]

Therefore, the perimeter of given shape ABCD=AB+BC+CD+AD

The perimeter of given shape ABCD=[tex]\sqrt5+\sqrt{10}+\sqrt5+\sqrt{10}[/tex]

The perimeter of given shape ABCD=[tex]2\sqrt5+2\sqrt{10}=2\times 2.23+2\times 3.16[/tex].

Substitute [tex]\sqrt5=2.23,\sqrt{10}=3.16[/tex]

The perimeter of given shape=4.46+6.32

The perimeter of given shape=10.78=10.8(round off)

Hence, the perimeter of given shape=10.8 units

Therefore, option A is correct.

Answer:

10.8

Step-by-step explanation: