Respuesta :
Answer:
[tex]5xk^2\sqrt{6x}[/tex]
Step-by-step explanation:
The given expression is [tex]\sqrt{150x^3.k^4}[/tex]
Here we have to simplify the terms.
Let's take [tex]\sqrt{150}[/tex], this can be written as [tex]\sqrt{25*6}[/tex]
[tex]\sqrt{25} = 5[/tex]
[tex]\sqrt{25*6} = 5\sqrt{6}[/tex]
Let's simplify [tex]\sqrt{x^3} = \sqrt{x^2} \sqrt{x} = x.\sqrt{x}[/tex]
[tex]\sqrt{k^4} = k^{2}[/tex]
Now let's put together.
[tex]\sqrt{150.x^3.k^4} = 5\sqrt{6} . x\sqrt{x} .k^{2}[/tex]
[tex]= 5xk^2\sqrt{6x}[/tex]