Respuesta :
Answer:
95.44% of the data lies between 8 and 16.
Step-by-step explanation:
Since, z score or standard score formula is,
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Where,
[tex]\mu[/tex] = mean of the data,
[tex]\sigma[/tex] = standard deviation,
Let X represents a data point,
So, we have to find out,
P( 8 < X < 16),
Since,
[tex]P(8 < X < 16)=P(\frac{8-\mu}{\sigma}< Z< \frac{16-\mu}{\sigma})[/tex]
[tex]=P(\frac{8-12}{2}<Z<\frac{16-12}{2})[/tex]
[tex]=P(-2<Z<2)[/tex]
[tex]=P(Z<2) - P(Z<-2)[/tex]
[tex]=0.9772-0.0228[/tex] ( By the z-score table )
[tex]=0.9544[/tex]
[tex]=95.44\%[/tex]
Hence, 95.44% of the data lies between 8 and 16.