The mean of a normally distributed dataset is 12, and the standard deviation is 2.
% of the data points lies between 8 and 16.

Respuesta :

NormalCdf(-2,2,0,1)=.9545
95.45%

Answer:

95.44% of the data lies between 8 and 16.

Step-by-step explanation:

Since, z score or standard score formula is,

[tex]z=\frac{x-\mu}{\sigma}[/tex]

Where,

[tex]\mu[/tex] = mean of the data,

[tex]\sigma[/tex] = standard deviation,

Let X represents a data point,

So, we have to find out,

P( 8 < X < 16),

Since,

[tex]P(8 < X < 16)=P(\frac{8-\mu}{\sigma}< Z< \frac{16-\mu}{\sigma})[/tex]

[tex]=P(\frac{8-12}{2}<Z<\frac{16-12}{2})[/tex]

[tex]=P(-2<Z<2)[/tex]

[tex]=P(Z<2) - P(Z<-2)[/tex]

[tex]=0.9772-0.0228[/tex]  ( By the z-score table )

[tex]=0.9544[/tex]

[tex]=95.44\%[/tex]

Hence, 95.44% of the data lies between 8 and 16.