[tex]\begin{cases}N\equiv a\mod10\\N\equiv b\mod13\end{cases}[/tex]
means there are integers [tex]n_1,n_2[/tex] such that
[tex]\begin{cases}N=10n_1+a\\N=13n_2+b\end{cases}[/tex]
Multiplying the first equation by 13 and the second by 10 gives
[tex]\begin{cases}13N=130n_1+13a\\10N=130n_2+10b\end{cases}[/tex]
Adding the two equations gives
[tex]23N=130(n_1+n_2)+13a+10b[/tex]
[tex]\implies23N\equiv13a+10b\mod130[/tex]
and since [tex](23,130)=1[/tex] (they are coprime), it follows that
[tex]N\equiv23^{-1}(13a+10b)\mod130[/tex]
where [tex]23^{-1}[/tex] is the modular multiplicative inverse of 23 (as opposed to 1/23) modulo 130. By the Euclidean algorithm we have
[tex]130=23(5)+15[/tex]
[tex]23=15(1)+8[/tex]
[tex]15=8(1)+7[/tex]
[tex]8=7(1)+1[/tex]
[tex]\implies1=8-1(7)[/tex]
[tex]\implies1=2(8)-1(15)[/tex]
[tex]\implies1=2(23)-3(15)[/tex]
[tex]\implies1=17(23)-3(130)[/tex]
[tex]\implies17(23)\equiv1\mod130[/tex]
which means 17 is the inverse of 23 mod 130, so
[tex]N\equiv17(13a+10b)\mod130[/tex]
[tex]\implies N\equiv221a+170b\mod130[/tex]
[tex]\implies N\equiv91a+40b\mod130[/tex]