Answer:
[tex]x=\frac{2\pm\sqrt{76}}{-6}[/tex]
Step-by-step explanation:
Given : Equation [tex]-3x^2-2x+6=0[/tex]
To find : The correct substitution of the the values a, b, and c from the equation into quadratic formula?
Solution :
The general form of the quadratic equation is [tex]ax^2+bx+c=0[/tex]
Where, a is the coefficient of [tex]x^2[/tex]
b is the coefficient of x
c is the constant term.
On comparing with [tex]-3x^2-2x+6=0[/tex]
a=-3 , b=-2 , c=6
The quadratic formula of the quadratic equation is given by,
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Substituting the values,
[tex]x=\frac{-(-2)\pm\sqrt{(-2)^2-4(-3)(6)}}{2(-3)}[/tex]
[tex]x=\frac{2\pm\sqrt{4+72}}{-6}[/tex]
[tex]x=\frac{2\pm\sqrt{76}}{-6}[/tex]
So, The required formula which shows the correct substitution of the values.