Match each trigonometric function with its Unit Circle definition. Note that Angle A is correctly oriented for the Unit Circle definition, its terminal side intersects the Unit Circle at the point (x, y), and neither x nor y is equal to zero.

1. y
2. x
3. y/x
4. 1/y
5. 1/x
6. x/y

a. sin A
b. csc A
c. tan A
d. sec A
e. cos A
f. cot A

Respuesta :

The first diagram below shows a circle with a radius of 1 (unit circle). The circle is drawn on a Cartesian graph with (0,0) as the center of the circle.

From the second diagram, we can determine the value of sin(Θ) = y
and cos(Θ) = x

We can further deduce that
tan(Θ) = [tex] \frac{y}{x} [/tex]
sec(Θ) = [tex] \frac{1}{cos(Θ)} [/tex] = [tex] \frac{1}{x} [/tex]
cosec(Θ) = [tex] \frac{1}{sin(Θ)} [/tex] = [tex] \frac{1}{y} [/tex]
cot(Θ) = [tex] \frac{cos(Θ)}{sin(Θ)} [/tex] = [tex] \frac{x}{y} [/tex]
Ver imagen merlynthewhizz
Ver imagen merlynthewhizz

Answer:

The required matching is a-1, b-4, c-3, d-5, e-2, f-6.

Step-by-step explanation:

Unit Circle is circle having radius 1 units and centered at origin.

The terminal side intersects the Unit Circle at the point (x, y), and neither x nor y is equal to zero.

So, perpendicular of triangle is y, base is x and hypotenuse is 1 unit.

It a right angled triangle,

[tex]\sin A=\frac{perpendicular}{hypotenuse}\Rightarrow \frac{y}{1}=y[/tex]

[tex]\csc A=\frac{1}{\sin A}=\frac{1}{y}[/tex]

[tex]\tan A=\frac{perpendicular}{base}\Rightarrow \frac{y}{x}[/tex]

[tex]\sec A=\frac{hypotenuse}{base}=\frac{1}{x}[/tex]

[tex]\cos A=\frac{base}{hypotenuse}=\frac{x}{1}=x[/tex]

[tex]\cot A=\frac{1}{\tan A}=\frac{x}{y}[/tex]

Therefore the required matching is a-1, b-4, c-3, d-5, e-2, f-6.

Ver imagen DelcieRiveria