Respuesta :

[tex]\bf f(x)=ln(x-5)\qquad [6,8]\qquad \cfrac{df}{dx}=\cfrac{1}{x-5}\\\\ -----------------------------\\\\ \textit{mean value theorem}\qquad f'(c)=\cfrac{f(b)-f(a)}{b-a}\\\\ -----------------------------\\\\ f'(c)=\cfrac{1}{c-5}\qquad thus\quad \cfrac{1}{c-5}=\cfrac{f(8)-f(6)}{8-6} \\\\\\ \cfrac{1}{c-5}=\cfrac{ln(3)-ln(1)}{2}\implies \cfrac{1}{c-5}=\cfrac{ln(3)-0}{2} \\\\\\ \cfrac{2}{ln(3)}=c-5\implies \boxed{\cfrac{2}{ln(3)}+5=c}[/tex]
RELAXING NOICE
Relax