Answer: The correct option is C.
Explanation:
The given equation is,
[tex]2x^2-x-15=x(x+1)[/tex]
Simplify the above equation.
[tex]2x^2-x-15=x^2+x[/tex]
[tex]2x^2-x-15-x^2-x=0[/tex]
[tex]x^2-2x-15=0[/tex]
Use factoring by grouping method.
[tex]x^2-5x+3x-15=0[/tex]
[tex]x(x-5)+3(x-5)=0[/tex]
[tex](x-5)(x+3)=0[/tex]
According to zero product property the product of two factors is zero if and only of at least one of them is 0.
Equate each factor equal to 0.
[tex]x-5=0[/tex]
[tex]x=5[/tex]
[tex]x+3=0[/tex]
[tex]x=-3[/tex]
Therefore the solution is x=5 or x=-3 and the option C is correct.