Solve the initial-value problem using the method of undetermined coefficients. y"+16y= e^x + x^3.
y(0)=4,
y'(0)=0

Respuesta :

The homogeneous part of the ODE has characteristic equation

[tex]r^2+16=0[/tex]

with roots at [tex]r=\pm4i[/tex], so the characteristic solution would be

[tex]y_c=C_1\cos4x+C_2\sin4x[/tex]

As a guess for the solution to the nonhomogeneous part, we can try

[tex]y_p=ae^x+b_0+b_1x+b_2x^2+b_3x^3[/tex]
[tex]\implies{y_p}''=ae^x+2b_2+6b_3x[/tex]

Substituting into the ODE gives

[tex](ae^x+2b_2+6b_3x)+16(ae^x+b_0+b_1x+b_2x^2+b_3x^3)=e^x+x^3[/tex]
[tex]17ae^x+(16b_0+2b_2)+(16b_1+6b_3)x+16b_2x^2+16b_3x^3=e^x+x^3[/tex]
[tex]\implies\begin{cases}17a=1\\16b_0+2b_2=0\\16b_1+6b_3=0\\16b_2=0\\16b_3=1\end{cases}\implies a=\dfrac1{17},b_0=0,b_1=-\dfrac3{128},b_2=0,b_3=\dfrac1{16}[/tex]

so that the particular solution is

[tex]y_p=\dfrac1{17}e^x+\dfrac1{16}x^3-\dfrac3{128}x[/tex]

and the general solution to the ODE is

[tex]y=y_c+y_p[/tex]
[tex]y=C_1\cos4x+C_2\sin4x+\dfrac1{17}e^x+\dfrac1{16}x^3-\dfrac3{128}x[/tex]

Given the initial values, we have

[tex]y(0)=4\implies4=C_1+\dfrac1{17}\implies C_1=\dfrac{67}{17}[/tex]
[tex]y'(0)=0\implies0=4C_2+\dfrac1{17}-\dfrac3{128}\implies C_2=-\dfrac{77}{8704}[/tex]

so that the solution to the IVP is

[tex]y=\dfrac{67}{17}\cos4x-\dfrac{77}{8704}\sin4x+\dfrac1{17}e^x+\dfrac1{16}x^3-\dfrac3{128}x[/tex]
ACCESS MORE
EDU ACCESS
Universidad de Mexico