Respuesta :
f(x) = x • 3 • 2 + 47x - 60
fx =3x - 24x + 47x - 60
fx = 26x - 60
x = - 60/f - 26
fx =3x - 24x + 47x - 60
fx = 26x - 60
x = - 60/f - 26
Answer: [tex]x=3,\:x=4,\:x=5[/tex].
Step-by-step explanation: Given polynomial function [tex]f(x) = x^3-12x^2+47x-60[/tex].
[tex]\mathrm{Use\:the\:rational\:root\:theorem}\\[/tex]
[tex]p=60,\:\quad q=1[/tex]
[tex]\mathrm{The\:dividers\:of\:}p:\quad 1,\:2,\:3,\:4,\:5,\:6,\:10,\:12,\:15,\:20,\:30,\:60,\:\quad \mathrm{The\:dividers\:of\:}q:\quad 1[/tex]
[tex]\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm \frac{1,\:2,\:3,\:4,\:5,\:6,\:10,\:12,\:15,\:20,\:30,\:60}{1}[/tex]
[tex]\frac{3}{1}\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x-3[/tex]
[tex]\frac{x^3-12x^2+47x-60}{x-3}=x^2-9x+20 \ \ By \ long \ division.[/tex]
[tex]\mathrm{Factor}\:x^2-9x+20:\quad \left(x-4\right)\left(x-5\right)[/tex]
Therefore,
[tex]x^3-12x^2+47x-60=\left(x-3\right)\left(x-4\right)\left(x-5\right)[/tex]
[tex]\mathrm{Solve\:}\:x-3=0:\quad x=3[/tex]
[tex]\mathrm{Solve\:}\:x-4=0:\quad x=4[/tex]
[tex]\mathrm{Solve\:}\:x-5=0:\quad x=5[/tex]
[tex]\mathrm{The\:final\:solutions\:to\:the\:equation\:are:}[/tex]
[tex]x=3,\:x=4,\:x=5[/tex]
