Respuesta :
1. Divide wire b in parts x and b-x.
2. Bend the b-x piece to form a triangle with side (b-x)/3
There are many ways to find the area of the equilateral triangle. One is by the formula A= [tex] \frac{1}{2}sin60^{o}side*side= \frac{1}{2} \frac{ \sqrt{3} }{2} (\frac{b-x}{3}) ^{2}= \frac{ \sqrt{3} }{36}(b-x)^{2} [/tex]
A=[tex]\frac{ \sqrt{3} }{36}(b-x)^{2}=\frac{ \sqrt{3} }{36}( b^{2}-2bx+ x^{2} )=\frac{ \sqrt{3} }{36}b^{2}-\frac{ \sqrt{3} }{18}bx+ \frac{ \sqrt{3} }{36}x^{2}[/tex]
Another way is apply the formula A=1/2*base*altitude,
where the altitude can be found by applying the pythagorean theorem on the triangle with hypothenuse (b-x)/3 and side (b-x)/6
3. Let x be the circumference of the circle.
[tex]2 \pi r=x[/tex]
so [tex]r= \frac{x}{2 \pi } [/tex]
Area of circle = [tex] \pi r^{2}= \pi ( \frac{x}{2 \pi } )^{2} = \frac{ \pi }{ 4 \pi ^{2}
}* x^{2} = \frac{1}{4 \pi } x^{2} [/tex]
4. Let f(x)=[tex]\frac{ \sqrt{3} }{36}b^{2}-\frac{ \sqrt{3} }{18}bx+ \frac{ \sqrt{3} }{36}x^{2}+\frac{1}{4 \pi } x^{2}[/tex]
be the function of the sum of the areas of the triangle and circle.
5. f(x) is a minimum means f'(x)=0
f'(x)=[tex]\frac{ -\sqrt{3} }{18}b+ \frac{ \sqrt{3} }{18}x+\frac{1}{2 \pi } x[/tex]=0
[tex]\frac{ -\sqrt{3} }{18}b+ \frac{ \sqrt{3} }{18}x+\frac{1}{2 \pi } x=0[/tex]
[tex](\frac{ \sqrt{3} }{18}+\frac{1}{2 \pi }) x=\frac{ \sqrt{3} }{18}b[/tex]
[tex]x= \frac{\frac{ \sqrt{3} }{18}b}{(\frac{ \sqrt{3} }{18}+\frac{1}{2 \pi }) } [/tex]
6. So one part is [tex] \frac{\frac{ \sqrt{3} }{18}b}{(\frac{ \sqrt{3} }{18}+\frac{1}{2 \pi }) } [/tex] and the other part is b-[tex] \frac{\frac{ \sqrt{3} }{18}b}{(\frac{ \sqrt{3} }{18}+\frac{1}{2 \pi }) } [/tex]
2. Bend the b-x piece to form a triangle with side (b-x)/3
There are many ways to find the area of the equilateral triangle. One is by the formula A= [tex] \frac{1}{2}sin60^{o}side*side= \frac{1}{2} \frac{ \sqrt{3} }{2} (\frac{b-x}{3}) ^{2}= \frac{ \sqrt{3} }{36}(b-x)^{2} [/tex]
A=[tex]\frac{ \sqrt{3} }{36}(b-x)^{2}=\frac{ \sqrt{3} }{36}( b^{2}-2bx+ x^{2} )=\frac{ \sqrt{3} }{36}b^{2}-\frac{ \sqrt{3} }{18}bx+ \frac{ \sqrt{3} }{36}x^{2}[/tex]
Another way is apply the formula A=1/2*base*altitude,
where the altitude can be found by applying the pythagorean theorem on the triangle with hypothenuse (b-x)/3 and side (b-x)/6
3. Let x be the circumference of the circle.
[tex]2 \pi r=x[/tex]
so [tex]r= \frac{x}{2 \pi } [/tex]
Area of circle = [tex] \pi r^{2}= \pi ( \frac{x}{2 \pi } )^{2} = \frac{ \pi }{ 4 \pi ^{2}
}* x^{2} = \frac{1}{4 \pi } x^{2} [/tex]
4. Let f(x)=[tex]\frac{ \sqrt{3} }{36}b^{2}-\frac{ \sqrt{3} }{18}bx+ \frac{ \sqrt{3} }{36}x^{2}+\frac{1}{4 \pi } x^{2}[/tex]
be the function of the sum of the areas of the triangle and circle.
5. f(x) is a minimum means f'(x)=0
f'(x)=[tex]\frac{ -\sqrt{3} }{18}b+ \frac{ \sqrt{3} }{18}x+\frac{1}{2 \pi } x[/tex]=0
[tex]\frac{ -\sqrt{3} }{18}b+ \frac{ \sqrt{3} }{18}x+\frac{1}{2 \pi } x=0[/tex]
[tex](\frac{ \sqrt{3} }{18}+\frac{1}{2 \pi }) x=\frac{ \sqrt{3} }{18}b[/tex]
[tex]x= \frac{\frac{ \sqrt{3} }{18}b}{(\frac{ \sqrt{3} }{18}+\frac{1}{2 \pi }) } [/tex]
6. So one part is [tex] \frac{\frac{ \sqrt{3} }{18}b}{(\frac{ \sqrt{3} }{18}+\frac{1}{2 \pi }) } [/tex] and the other part is b-[tex] \frac{\frac{ \sqrt{3} }{18}b}{(\frac{ \sqrt{3} }{18}+\frac{1}{2 \pi }) } [/tex]
If the sum of the areas enclosed by each part is a minimum, the length of each part is [tex]\frac{\sqrt{3} \pi b}{9+\sqrt{3} \pi} [/tex]
Explanation:
A wire is a single, usually cylindrical, flexible strand or rod of metal. There are many types of wire such as: Black : Hot wire, for switches or outlets, Red : Hot wire, for switch legs, Blue and Yellow : Hot wires, pulled in conduit, White : Always neutral, Green and Bare Copper : Only for grounding.
A wire b units long is cut into two pieces. One piece is bent into an equilateral triangle and the other is bent into a circle. If the sum of the areas enclosed by each part is a minimum, what is the length of each part?
An equilateral triangle is a triangle where all three sides are equal. An equilateral triangle is also equiangular that all three internal angles are also congruent to each other and are each 60°.
According to the picture attached below
[tex]A(x)=\pi (\frac{x}{2\pi})^2 + 1/2 \frac{b-x}{3} \frac{\sqrt{3} (b-x) }{6}[/tex]
[tex]A(x)=\frac{x^2}{4\pi} +\frac{\sqrt{3}}{36} (b-x)^2[/tex]
[tex]A'(x)=\frac{x}{2\pi} -\frac{\sqrt{3}}{18} (b-x) = 0[/tex] when
[tex]x=\frac{\sqrt{13}/18 b}{1/2\pi + \sqrt{3}/18}[/tex]
[tex]\frac{\sqrt{3} \pi b}{9+\sqrt{3} \pi} [/tex]
Learn more about an equilateral triangle https://brainly.com/question/3591053
#LearnWithBrainly