Respuesta :

I got
x^2-3x-10, or
(x-5)(x+2)

The simplified for of given expression is [tex]\bold{\frac{1}{x^2-3x-10}}[/tex]

What is expression?

"It is a mathematical statement which consists of numbers, variables and some mathematical operations."

What is quadratic expression?

"It is a polynomial expression with degree 2."

For given question,

We have been given an expression [tex]\frac{x+4}{x^2-3x-10}\times \frac{x-3}{x^2+x-12}[/tex]

We need to find the simplified form of given expression.

First we solve the quadratic expressions at the denominators.

Consider quadratic expression [tex]x^2-3x-10[/tex]

[tex]\Rightarrow x^2-3x-10\\\\= x^2-5x+2x-10\\\\=x(x-5)+2(x-5)\\\\=(x-5)(x+2)[/tex]

So, the expression [tex]\frac{x+4}{x^2-3x-10}[/tex] would be,

[tex]\frac{x+4}{x^2-3x-10}=\frac{x+4}{(x-5)(x+2)}[/tex]

Now consider quadratic expression [tex]x^2+x-12[/tex]

[tex]\Rightarrow x^2+x-12\\\\= x^2+4x-3x-12\\\\=x(x+4)-3(x+4)\\\\=(x+4)(x-3)[/tex]

So, the expression [tex]\frac{x-3}{x^2+x-12}[/tex] would be,

[tex]\frac{x-3}{x^2+x-12} =\frac{x-3}{(x+4)(x-3)}[/tex]

The given expression would be,

[tex]\frac{x+4}{x^2-3x-10}\times \frac{x-3}{x^2+x-12}\\\\=\frac{x+4}{(x-5)(x+2)}\times \frac{x-3}{(x+4)(x-3)}\\\\=\frac{1}{(x-5)(x+2)}\\\\ =\frac{1}{x^2-3x-10}[/tex]

Therefore, the simplified for of given expression is [tex]\bold{\frac{1}{x^2-3x-10}}[/tex]

Learn more about simplified form of expressions here:

https://brainly.com/question/4071137

#SPJ2

RELAXING NOICE
Relax