Respuesta :
Assuming you start with the homogeneous ODE,
[tex]y''+7y'+7y=0[/tex]
upon taking the Laplace transform of both sides, you end up with
[tex]\mathcal L\left\{y''+7y'+7y\right\}=\mathcal L\{0\}[/tex]
[tex]\mathcal L\{y''\}+7\mathcal L\{y'\}+7\mathcal L\{y\}=0[/tex]
since the transform operator is linear, and the transform of 0 is 0.
I'll denote the Laplace transform of a function [tex]y(t)[/tex] into the [tex]s[/tex]-domain by [tex]\mathcal L_s\{y(t)\}:=Y(s)[/tex].
Given the derivative of [tex]y(t)[/tex], its Laplace transform can be found easily from the definition of the transform itself:
[tex]Y(s)=\displaystyle\int_0^\infty y(t)e^{-st}\,\mathrm dt[/tex]
[tex]\implies\mathcal L_s\{y'(t)\}=\displaystyle\int_0^\infty y'(t)e^{-st}\,\mathrm dt[/tex]
Integrate by parts, setting
[tex]u=e^{-st}\implies\mathrm du=-se^{-st}\,\mathrm dt[/tex]
[tex]\mathrm dv=y'(t)\,\mathrm dt\implies v=y(t)[/tex]
so that
[tex]\mathcal L_s\{y'(t)\}=y(t)e^{-st}\bigg|_{t=0}^{t\to\infty}+s\displaystyle\int_0^\infty y(t)e^{-st}\,\mathrm dt[/tex]
The second term is just the transform of the original function, while the first term reduces to [tex]y(0)[/tex] since [tex]e^{-st}\to0[/tex] as [tex]t\to\infty[/tex], and [tex]e^{-st}\to1[/tex] as [tex]t\to0[/tex]. So we have a rule for transforming the first derivative, and by the same process we can generalize it to any order provided that we're given the value of all the preceeding derivatives at [tex]t=0[/tex].
The general rule gives us
[tex]\mathcal L_s\{y(t)\}=Y(s)[/tex]
[tex]\mathcal L_s\{y'(t)\}=sY(s)-y(0)[/tex]
[tex]\mathcal L_s\{y''(t)\}=s^2Y(s)-sy(0)-y'(0)[/tex]
and so our ODE becomes
[tex]\bigg(s^2Y(s)-sy(0)-y'(0)\bigg)+7\bigg(sY(s)-y(0)\bigg)+7Y(s)=0[/tex]
[tex](s^2+7s+7)Y(s)-7=0[/tex]
[tex]Y(s)=\dfrac7{s^2+7s+7}[/tex]
[tex]Y(s)=\dfrac{14}{\sqrt{21}}\dfrac{\frac{\sqrt{21}}2}{\left(s+\frac72\right)^2-\left(\frac{\sqrt{21}}2\right)^2}[/tex]
Depending on how you learned about finding inverse transforms, you should either be comfortable with cross-referencing a table and do some pattern-matching, or be able to set up and compute an appropriate contour integral. The former approach seems to be more common, so I'll stick to that.
Recall that
[tex]\mathcal L_s\{\sinh(at)\}=\dfrac a{s^2-a^2}[/tex]
and that given a function [tex]y(t)[/tex] with transform [tex]Y(s)[/tex], the shifted transform [tex]Y(s-c)[/tex] corresponds to the function [tex]e^{ct}y(t)[/tex].
We have
[tex]Y(s)=\dfrac{14}{\sqrt{21}}\dfrac{\frac{\sqrt{21}}2}{\left(s+\frac72\right)^2-\left(\frac{\sqrt{21}}2\right)^2}[/tex]
[tex]\implies Y\left(s-\dfrac72\right)=\dfrac{14}{\sqrt{21}}\dfrac{\frac{\sqrt{21}}2}{s^2-\left(\frac{\sqrt{21}}2\right)^2}[/tex]
and so the inverse transform for our ODE is
[tex]\mathcal L^{-1}_t\left\{Y\left(s-\dfrac72\right)\right\}=\dfrac{14}{\sqrt{21}}\mathcal L^{-1}_t\left\{\dfrac{\frac{\sqrt{21}}2}{s^2-\left(\frac{\sqrt{21}}2\right)^2}\right\}[/tex]
[tex]\implies e^{7/2t}y(t)=\dfrac{14}{\sqrt{21}}\sinh\left(\dfrac{\sqrt{21}}2t\right)[/tex]
[tex]\implies y(t)=\dfrac{14}{\sqrt{21}}e^{-7/2t}\sinh\left(\dfrac{\sqrt{21}}2t\right)[/tex]
and in case you're not familiar with hyperbolic functions, you have
[tex]\sinh t=\dfrac{e^t-e^{-t}}2[/tex]
[tex]y''+7y'+7y=0[/tex]
upon taking the Laplace transform of both sides, you end up with
[tex]\mathcal L\left\{y''+7y'+7y\right\}=\mathcal L\{0\}[/tex]
[tex]\mathcal L\{y''\}+7\mathcal L\{y'\}+7\mathcal L\{y\}=0[/tex]
since the transform operator is linear, and the transform of 0 is 0.
I'll denote the Laplace transform of a function [tex]y(t)[/tex] into the [tex]s[/tex]-domain by [tex]\mathcal L_s\{y(t)\}:=Y(s)[/tex].
Given the derivative of [tex]y(t)[/tex], its Laplace transform can be found easily from the definition of the transform itself:
[tex]Y(s)=\displaystyle\int_0^\infty y(t)e^{-st}\,\mathrm dt[/tex]
[tex]\implies\mathcal L_s\{y'(t)\}=\displaystyle\int_0^\infty y'(t)e^{-st}\,\mathrm dt[/tex]
Integrate by parts, setting
[tex]u=e^{-st}\implies\mathrm du=-se^{-st}\,\mathrm dt[/tex]
[tex]\mathrm dv=y'(t)\,\mathrm dt\implies v=y(t)[/tex]
so that
[tex]\mathcal L_s\{y'(t)\}=y(t)e^{-st}\bigg|_{t=0}^{t\to\infty}+s\displaystyle\int_0^\infty y(t)e^{-st}\,\mathrm dt[/tex]
The second term is just the transform of the original function, while the first term reduces to [tex]y(0)[/tex] since [tex]e^{-st}\to0[/tex] as [tex]t\to\infty[/tex], and [tex]e^{-st}\to1[/tex] as [tex]t\to0[/tex]. So we have a rule for transforming the first derivative, and by the same process we can generalize it to any order provided that we're given the value of all the preceeding derivatives at [tex]t=0[/tex].
The general rule gives us
[tex]\mathcal L_s\{y(t)\}=Y(s)[/tex]
[tex]\mathcal L_s\{y'(t)\}=sY(s)-y(0)[/tex]
[tex]\mathcal L_s\{y''(t)\}=s^2Y(s)-sy(0)-y'(0)[/tex]
and so our ODE becomes
[tex]\bigg(s^2Y(s)-sy(0)-y'(0)\bigg)+7\bigg(sY(s)-y(0)\bigg)+7Y(s)=0[/tex]
[tex](s^2+7s+7)Y(s)-7=0[/tex]
[tex]Y(s)=\dfrac7{s^2+7s+7}[/tex]
[tex]Y(s)=\dfrac{14}{\sqrt{21}}\dfrac{\frac{\sqrt{21}}2}{\left(s+\frac72\right)^2-\left(\frac{\sqrt{21}}2\right)^2}[/tex]
Depending on how you learned about finding inverse transforms, you should either be comfortable with cross-referencing a table and do some pattern-matching, or be able to set up and compute an appropriate contour integral. The former approach seems to be more common, so I'll stick to that.
Recall that
[tex]\mathcal L_s\{\sinh(at)\}=\dfrac a{s^2-a^2}[/tex]
and that given a function [tex]y(t)[/tex] with transform [tex]Y(s)[/tex], the shifted transform [tex]Y(s-c)[/tex] corresponds to the function [tex]e^{ct}y(t)[/tex].
We have
[tex]Y(s)=\dfrac{14}{\sqrt{21}}\dfrac{\frac{\sqrt{21}}2}{\left(s+\frac72\right)^2-\left(\frac{\sqrt{21}}2\right)^2}[/tex]
[tex]\implies Y\left(s-\dfrac72\right)=\dfrac{14}{\sqrt{21}}\dfrac{\frac{\sqrt{21}}2}{s^2-\left(\frac{\sqrt{21}}2\right)^2}[/tex]
and so the inverse transform for our ODE is
[tex]\mathcal L^{-1}_t\left\{Y\left(s-\dfrac72\right)\right\}=\dfrac{14}{\sqrt{21}}\mathcal L^{-1}_t\left\{\dfrac{\frac{\sqrt{21}}2}{s^2-\left(\frac{\sqrt{21}}2\right)^2}\right\}[/tex]
[tex]\implies e^{7/2t}y(t)=\dfrac{14}{\sqrt{21}}\sinh\left(\dfrac{\sqrt{21}}2t\right)[/tex]
[tex]\implies y(t)=\dfrac{14}{\sqrt{21}}e^{-7/2t}\sinh\left(\dfrac{\sqrt{21}}2t\right)[/tex]
and in case you're not familiar with hyperbolic functions, you have
[tex]\sinh t=\dfrac{e^t-e^{-t}}2[/tex]