[tex]\bf \textit{difference of squares}
\\ \quad \\
(a-b)(a+b) = a^2-b^2\qquad \qquad
a^2-b^2 = (a-b)(a+b)\\\\
-----------------------------\\\\
\cfrac{x+3}{x^2-2x}\cdot \cfrac{(x-2)^2}{x^2-9}\implies \cfrac{x+3}{x^2-2x}\cdot \cfrac{(x-2)(x-2)}{x^2-3^2}
\\\\\\
\cfrac{x+3}{x(x-2)}\cdot \cfrac{(x-2)(x-2)}{x^2-3^2}\implies \cfrac{\underline{x+3}}{x\underline{(x-2)}}\cdot \cfrac{\underline{(x-2)}(x-2)}{(x-3)\underline{(x+3)}}
\\\\\\
\cfrac{x-2}{x(x-3)}\iff\cfrac{x-2}{x^2-3x}[/tex]