Respuesta :
4.
first one, since the lower bound is y=0
so what we do is just inetgrate from x=0 to x=8
[tex] \int\limits^8_9 { \frac{16x}{x^2+1} } \, dx [/tex]
find an antiederivitive
use u subsitution
u=x²+1
du=2x dx
so factor out the 8
[tex] 8 \int\limits^8_9 { \frac{2x}{x^2+1} } \, dx [/tex]
[tex] 8 \int\limits^8_9 { \frac{1}{u} } \, du [/tex]
and we know that the antideritivitve of 1/u is ln|u|
8ln|x²+1| is an antideritivive
now
[tex][8ln|x^2+1|]^8_0[/tex]
[tex]8ln|8^2+1|-8ln|0^2+1|[/tex]
[tex]8ln|65|+8ln|1|[/tex]
[tex]8ln65+0[/tex]
the aera is 8ln65
A is the answer
6.
find where they intersect to find the area bounded
f(x)=g(x) at x=-6 and x=2
and g(x) is on top (we can see that because g(0)>f(0))
so we integrate from -6 to 2
[tex] \int\limits^2_{-6} {g(x)-f(x)} \, dx [/tex]
[tex] \int\limits^2_{-6} {8x+48-(x^2+12x+36)} \, dx [/tex]
[tex] \int\limits^2_{-6} {8x+48-x^2-12x-36)} \, dx [/tex]
[tex] \int\limits^2_{-6} {-x^2-4x+12)} \, dx [/tex]
this is easy
use reverse power rules
remember that [tex] \int\limits^a_b {f(x)+g(x)} \, dx = \int\limits^a_b {f(x)} \, dx + \int\limits^a_b {g(x)} \, dx [/tex]
the antiderivitive is
[tex]\frac{-x^3}{3} -2x^2+12x[/tex]
so
[tex][\frac{-x^3}{3} -2x^2+12x]^2_{-6}[/tex]=
[tex](\frac{-2^3}{3} -2(2)^2+12(2))-(\frac{-(-6)^3}{3} -2(-6)^2+12(-6))[/tex]=
[tex]({-8}{3} -8+24)-(72 -72-72)[/tex]=
[tex]({-8}{3}+ 16)-(-72)[/tex]=
[tex]{-8}{3}+ 16+72[/tex]=
[tex]{-8}{3}+ 88[/tex]=
[tex] \frac{-8}{3} + \frac{264}{3} [/tex]=
[tex] \frac{256}{3} [/tex]
answer is C
first one, since the lower bound is y=0
so what we do is just inetgrate from x=0 to x=8
[tex] \int\limits^8_9 { \frac{16x}{x^2+1} } \, dx [/tex]
find an antiederivitive
use u subsitution
u=x²+1
du=2x dx
so factor out the 8
[tex] 8 \int\limits^8_9 { \frac{2x}{x^2+1} } \, dx [/tex]
[tex] 8 \int\limits^8_9 { \frac{1}{u} } \, du [/tex]
and we know that the antideritivitve of 1/u is ln|u|
8ln|x²+1| is an antideritivive
now
[tex][8ln|x^2+1|]^8_0[/tex]
[tex]8ln|8^2+1|-8ln|0^2+1|[/tex]
[tex]8ln|65|+8ln|1|[/tex]
[tex]8ln65+0[/tex]
the aera is 8ln65
A is the answer
6.
find where they intersect to find the area bounded
f(x)=g(x) at x=-6 and x=2
and g(x) is on top (we can see that because g(0)>f(0))
so we integrate from -6 to 2
[tex] \int\limits^2_{-6} {g(x)-f(x)} \, dx [/tex]
[tex] \int\limits^2_{-6} {8x+48-(x^2+12x+36)} \, dx [/tex]
[tex] \int\limits^2_{-6} {8x+48-x^2-12x-36)} \, dx [/tex]
[tex] \int\limits^2_{-6} {-x^2-4x+12)} \, dx [/tex]
this is easy
use reverse power rules
remember that [tex] \int\limits^a_b {f(x)+g(x)} \, dx = \int\limits^a_b {f(x)} \, dx + \int\limits^a_b {g(x)} \, dx [/tex]
the antiderivitive is
[tex]\frac{-x^3}{3} -2x^2+12x[/tex]
so
[tex][\frac{-x^3}{3} -2x^2+12x]^2_{-6}[/tex]=
[tex](\frac{-2^3}{3} -2(2)^2+12(2))-(\frac{-(-6)^3}{3} -2(-6)^2+12(-6))[/tex]=
[tex]({-8}{3} -8+24)-(72 -72-72)[/tex]=
[tex]({-8}{3}+ 16)-(-72)[/tex]=
[tex]{-8}{3}+ 16+72[/tex]=
[tex]{-8}{3}+ 88[/tex]=
[tex] \frac{-8}{3} + \frac{264}{3} [/tex]=
[tex] \frac{256}{3} [/tex]
answer is C
The first solution:
[tex] \int\limits^8_0 {\frac{16x}{1+x^2}} \, dx=8log(65)[/tex]
The second solution:
[tex]\int\limits^2_{-6}{(-36-12x-x^2+8(6+x))} \, dx=\frac{256}{3}[/tex]
[tex] \int\limits^8_0 {\frac{16x}{1+x^2}} \, dx=8log(65)[/tex]
The second solution:
[tex]\int\limits^2_{-6}{(-36-12x-x^2+8(6+x))} \, dx=\frac{256}{3}[/tex]
Otras preguntas
