In the figure, if CD = 15 cm, then BC ≈ cm.

Answer-
[tex]\boxed{\boxed{BC=21.5\ cm}}[/tex]
Solution-
Triangle ABC and ABD are right angle triangle.
From trigonometric properties,
[tex]\tan \theta=\dfrac{Perpendicular}{Base}[/tex]
In Triangle ABC
[tex]\tan 40=\dfrac{AB}{BC}=\dfrac{AB}{BD+CD}\\\\\Rightarrow AB=\tan 40\cdot (BD+CD)[/tex]
In Triangle ABD
[tex]\tan 70=\dfrac{AB}{BD}\\\\\Rightarrow AB=\tan 70\cdot (BD)[/tex]
From the above two equations,
[tex]\Rightarrow \tan 40\cdot (BD+CD)=\tan 70\cdot (BD)[/tex]
[tex]\Rightarrow \tan 40\cdot (BD+15)=\tan 70\cdot (BD)[/tex]
[tex]\Rightarrow BD+15=\dfrac{\tan 70}{\tan 40}\cdot (BD)[/tex]
[tex]\Rightarrow BD+15=3.3BD[/tex]
[tex]\Rightarrow 3.3BD- BD=15[/tex]
[tex]\Rightarrow 2.3BD=15[/tex]
[tex]\Rightarrow BD=\dfrac{15}{2.3}=6.5\ cm[/tex]
Therefore, [tex]BC=BD+CD=6.5+15=21.5\ cm[/tex]