Domain: x > 0
We know that:
1.
[tex]\log_aa=1[/tex] so [tex]\log_22=1[/tex] and
[tex]2=2\cdot 1=2\cdot\log_22[/tex]
2.
[tex]c\log_a b = \log_ab^c[/tex]
3.
[tex]\log_ax+\log_ay=\log_a(x\cdot y)[/tex]
We have equation:
[tex]\log_2(x+8)+2=2\log_2x\qquad\qquad\text{(from 1.)}\\\\ \log_2(x+8)+2\log_22=2\log_2x\qquad\qquad\text{(from 2.)}\\\\
\log_2(x+8)+\log_22^2=\log_2x^2\\\\
\log_2(x+8)+\log_24=\log_2x^2\qquad\qquad\text{(from 3.)}\\\\
\log_2(x+8)\cdot4=\log_2x^2\\\\
(x+8)\cdot4=x^2\\\\4x+32=x^2\\\\x^2-4x-32=0[/tex]
[tex]a=1\qquad\qquad b=-4\qquad\qquad c=-32\\\\\\\Delta=b^2-4ac=(-4)^2-4\cdot1\cdot(-32)=16+128=144\\\\\sqrt{\Delta}=\sqrt{144}=12\\\\\\x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-(-4)-12}{2}=\dfrac{4-12}{2}=\dfrac{-8}{2}=-4\ \textless \ 0\,\,\text{not a solution}}\\\\\\
x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-(-4)+12}{2}=\dfrac{4+12}{2}=\dfrac{16}{2}=\boxed{8}\ \textgreater \ 0[/tex]
So there is only one solution x = 8.