Use an appropriate substitution to solve the equation
[tex]y'- \frac{8}{x} y= \frac{ y^{5} } { x^{20} } [/tex] and find the solution that satisfies y(1)=1.

Respuesta :

[tex]y'-\dfrac8xy=\dfrac{y^5}{x^{20}}[/tex]

This ODE is in standard Bernoulli form, so we can divide through both sides by [tex]y^5[/tex] to get

[tex]y^{-5}y'-\dfrac8xy^{-4}=\dfrac1{x^{20}}[/tex]

Substitute [tex]z=y^{-4}[/tex], so that [tex]z'=-4y^{-5}y'[/tex]. Then the ODE can be written as a linear one in [tex]z[/tex]:

[tex]-\dfrac14z'-\dfrac8xz=\dfrac1{x^{20}}[/tex]
[tex]z'+\dfrac{32}xz=-\dfrac4{x^{20}}[/tex]

Multiplying both sides by [tex]x^{32}[/tex] gives

[tex]x^{32}z'+32x^{31}z=-4x^{12}[/tex]
[tex](x^{32}z)'=-4x^{12}[/tex]
[tex]x^{32}z=\displaystyle-4\int x^{12}\,\mathrm dx[/tex]
[tex]x^{32}z=-\dfrac4{13}x^{13}+C[/tex]
[tex]z=-\dfrac4{13x^{19}}+\dfrac C{x^{32}}[/tex]

Back-substitute to solve for [tex]y[/tex]:

[tex]\dfrac1{y^4}=-\dfrac4{13x^{19}}+\dfrac C{x^{32}}[/tex]
[tex]y^4=\dfrac1{Cx^{-32}-\frac4{13}x^{-19}}[/tex]
[tex]y=\left(\dfrac{x^{32}}{C-\frac4{13}x^{13}}\right)^{1/4}[/tex]
[tex]y=\dfrac{x^8}{(C-\frac4{13}x^{13})^{1/4}}[/tex]

Given that [tex]y(1)=1[/tex], you have

[tex]1=\dfrac{1^8}{(C-\frac4{13}1^{13})^{1/4}}[/tex]
[tex]1=\dfrac1{(C-\frac4{13})^{1/4}}[/tex]
[tex]1=\left(C-\dfrac4{13}\right)^{1/4}[/tex]
[tex]1=C-\dfrac4{13}[/tex]
[tex]C=\dfrac{17}{13}[/tex]

so that the particular solution is

[tex]y=\dfrac{x^8}{(\frac{17}{13}-\frac4{13}x^{13})^{1/4}}[/tex]
ACCESS MORE
EDU ACCESS