Respuesta :
Use a system:
[tex]2x+3=x^2+3x+2[/tex]
[tex]0=x^2+x-1[/tex]
[tex]x=0.618[/tex]
[tex]x=-1.618[/tex]
[tex]2x+3=x^2+3x+2[/tex]
[tex]0=x^2+x-1[/tex]
[tex]x=0.618[/tex]
[tex]x=-1.618[/tex]
Answer:
The equations are approximately equals at the points [tex](0.618,4.236)[/tex] and [tex](-1.618,-0.236)[/tex]
Step-by-step explanation:
we have
[tex]y=x^{2}+3x+2[/tex] -----> equation A
[tex]y=2x+3[/tex] -----> equation B
To solve the system of equations equate equation A to equation B
[tex]x^{2}+3x+2=2x+3[/tex]
Group terms that contain the same variable
[tex]x^{2}+3x-2x+2-3=0[/tex]
[tex]x^{2}+x-1=0[/tex]
The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^{2}+x-1=0[/tex]
so
[tex]a=1\\b=1\\c=-1[/tex]
substitute in the formula
[tex]x=\frac{-1(+/-)\sqrt{1^{2}-4(1)(-1)}} {2(1)}[/tex]
[tex]x=\frac{-1(+/-)\sqrt{5}} {2}[/tex]
[tex]x=\frac{-1+\sqrt{5}}{2}=0.618[/tex]
[tex]x=\frac{-1-\sqrt{5}}{2}=-1.618[/tex]
Find the values of y
For [tex]x=0.618[/tex]
[tex]y=2(0.618)+3=4.236[/tex]
For [tex]x=-1.618[/tex]
[tex]y=2(-1.618)+3=-0.236[/tex]
Therefore
The equations are approximately equals at the points [tex](0.618,4.236)[/tex] and [tex](-1.618,-0.236)[/tex]