Respuesta :
it would take 6 [tex] \frac{1}{4} [/tex] hours or 6.25 hours if John uses the 100 watt pump.
[tex]\bf \begin{array}{llllll}
\textit{something}&&\textit{varies inversely to}&\textit{something else}\\ \quad \\
\textit{something}&=&\cfrac{{{\textit{some value}}}}{}&\cfrac{}{\textit{something else}}\\ \quad \\
y&=&\cfrac{{{\textit{k}}}}{}&\cfrac{}{x}
\\
&&y=\cfrac{{{ k}}}{x}
\end{array}\\\\
-----------------------------\\\\
[/tex]
[tex]\bf \textit{the time a pump drains the pool varies inversely with the wattage } \\\\\\ thus\qquad t=\cfrac{k}{w}\qquad \begin{cases} t=time\\ k=\textit{constant of variation}\\ w=\textit{wattage power} \end{cases} \\\\\\ \textit{now, we know that with the old pump } \begin{cases} w=80\\ t=5 \end{cases}\implies 5=\cfrac{k}{80} \\\\\\ 5\cdot 80=k\implies 400=k\qquad thus\implies \boxed{y=\cfrac{400}{w}}[/tex]
now, how long will it take with the new pump that does 100watts?
well, set w = 100, to get the "t" value
[tex]\bf \textit{the time a pump drains the pool varies inversely with the wattage } \\\\\\ thus\qquad t=\cfrac{k}{w}\qquad \begin{cases} t=time\\ k=\textit{constant of variation}\\ w=\textit{wattage power} \end{cases} \\\\\\ \textit{now, we know that with the old pump } \begin{cases} w=80\\ t=5 \end{cases}\implies 5=\cfrac{k}{80} \\\\\\ 5\cdot 80=k\implies 400=k\qquad thus\implies \boxed{y=\cfrac{400}{w}}[/tex]
now, how long will it take with the new pump that does 100watts?
well, set w = 100, to get the "t" value